cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022580 Expansion of Product_{m>=1} (1+x^m)^15.

This page as a plain text file.
%I A022580 #23 Sep 08 2022 08:44:46
%S A022580 1,15,120,695,3285,13443,49305,165795,519240,1531960,4295046,11520000,
%T A022580 29718605,74060355,178930605,420368858,962785560,2154411120,
%U A022580 4718952965,10134292275,21369644184,44300604895,90390209685,181706747280,360207189225,704726281002,1361748557400
%N A022580 Expansion of Product_{m>=1} (1+x^m)^15.
%H A022580 Seiichi Manyama, <a href="/A022580/b022580.txt">Table of n, a(n) for n = 0..10000</a>
%F A022580 a(n) ~ 5^(1/4) * exp(Pi * sqrt(5*n)) / (512 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015
%F A022580 a(0) = 1, a(n) = (15/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 03 2017
%t A022580 nmax=50; CoefficientList[Series[Product[(1+q^m)^15,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *)
%o A022580 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^15)) \\ _G. C. Greubel_, Feb 25 2018
%o A022580 (Magma) Coefficients(&*[(1+x^m)^15:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 25 2018
%Y A022580 Column k=15 of A286335.
%K A022580 nonn
%O A022580 0,2
%A A022580 _N. J. A. Sloane_