This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022583 #22 Sep 08 2022 08:44:46 %S A022583 1,18,171,1158,6309,29430,121962,460008,1605996,5254334,16260867, %T A022583 47949804,135509922,368764290,970099191,2475106170,6141671649, %U A022583 14856839874,35107961175,81189855828,184033842021,409446105486,895231350108,1925717858910,4079428991751,8518121246538 %N A022583 Expansion of Product_{m>=1} (1+x^m)^18. %H A022583 Seiichi Manyama, <a href="/A022583/b022583.txt">Table of n, a(n) for n = 0..10000</a> %F A022583 a(n) ~ (3/2)^(1/4) * exp(Pi * sqrt(6*n)) / (1024 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015 %F A022583 a(0) = 1, a(n) = (18/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 04 2017 %t A022583 nmax=50; CoefficientList[Series[Product[(1+q^m)^18,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *) %o A022583 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^18)) \\ _G. C. Greubel_, Feb 25 2018 %o A022583 (Magma) Coefficients(&*[(1+x^m)^18:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 25 2018 %Y A022583 Column k=18 of A286335. %K A022583 nonn %O A022583 0,2 %A A022583 _N. J. A. Sloane_