This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022584 #22 Sep 08 2022 08:44:46 %S A022584 1,19,190,1349,7676,37278,160417,626924,2263698,7647652,24405633, %T A022584 74120672,215505334,602763220,1628328880,4262845643,10845598563, %U A022584 26882001287,65048680364,153950675585,356936640088,811869015895,1813912504439,3985419541978,8619872682020,18369414409148 %N A022584 Expansion of Product_{m>=1} (1+x^m)^19. %H A022584 Seiichi Manyama, <a href="/A022584/b022584.txt">Table of n, a(n) for n = 0..10000</a> %F A022584 a(n) ~ (19/3)^(1/4) * exp(Pi * sqrt(19*n/3)) / (2048 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015 %F A022584 a(0) = 1, a(n) = (19/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 04 2017 %t A022584 nmax=50; CoefficientList[Series[Product[(1+q^m)^19,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *) %o A022584 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^19)) \\ _G. C. Greubel_, Feb 25 2018 %o A022584 (Magma) Coefficients(&*[(1+x^m)^19:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 25 2018 %Y A022584 Column k=19 of A286335. %K A022584 nonn %O A022584 0,2 %A A022584 _N. J. A. Sloane_