This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022585 #23 Sep 08 2022 08:44:46 %S A022585 1,20,210,1560,9255,46724,208510,843320,3145855,10963160,36042250, %T A022585 112633760,336622160,966897820,2680139300,7193849624,18752326235, %U A022585 47590579080,117840608100,285228791880,675978772326,1570897356960,3584273539170,8038904002760,17741382028085,38563932406500 %N A022585 Expansion of Product_{m>=1} (1+x^m)^20. %H A022585 Seiichi Manyama, <a href="/A022585/b022585.txt">Table of n, a(n) for n = 0..10000</a> %F A022585 a(n) ~ (5/3)^(1/4) * exp(2 * Pi * sqrt(5*n/3)) / (2048 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015 %F A022585 a(0) = 1, a(n) = (20/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 04 2017 %t A022585 nmax=50; CoefficientList[Series[Product[(1+q^m)^20,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *) %o A022585 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^20)) \\ _G. C. Greubel_, Feb 25 2018 %o A022585 (Magma) Coefficients(&*[(1+x^m)^20:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 25 2018 %Y A022585 Column k=20 of A286335. %K A022585 nonn %O A022585 0,2 %A A022585 _N. J. A. Sloane_