This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022587 #24 Sep 08 2022 08:44:46
%S A022587 1,22,253,2046,13134,71368,341275,1473494,5848810,21628002,75261384,
%T A022587 248403586,782547909,2365168542,6887441198,19393122562,52959869787,
%U A022587 140631776582,363943223941,919706094494,2273411319069,5505315501136,13078268135683,30514651732686,70005101272876
%N A022587 Expansion of Product_{m>=1} (1 + x^m)^22.
%H A022587 Seiichi Manyama, <a href="/A022587/b022587.txt">Table of n, a(n) for n = 0..10000</a>
%F A022587 a(n) ~ (11/6)^(1/4) * exp(Pi * sqrt(22*n/3)) / (4096 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015
%F A022587 a(0) = 1, a(n) = (22/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 04 2017
%t A022587 nmax=50; CoefficientList[Series[Product[(1+q^m)^22,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *)
%o A022587 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^22)) \\ _G. C. Greubel_, Feb 25 2018
%o A022587 (Magma) Coefficients(&*[(1+x^m)^22:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 25 2018
%Y A022587 Column k=22 of A286335.
%K A022587 nonn
%O A022587 0,2
%A A022587 _N. J. A. Sloane_