This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022588 #24 Sep 08 2022 08:44:46 %S A022588 1,23,276,2323,15479,87101,430445,1917349,7839849,29824583,106646308, %T A022588 361327079,1167406906,3615602714,10780913004,31061653709,86741652761, %U A022588 235404301651,622271232287,1605432041576,4049617772390,10002785010369,24227747380447,57613905606273,134662398395411 %N A022588 Expansion of Product_{m>=1} (1 + x^m)^23. %H A022588 Seiichi Manyama, <a href="/A022588/b022588.txt">Table of n, a(n) for n = 0..10000</a> %F A022588 a(n) ~ (23/3)^(1/4) * exp(Pi * sqrt(23*n/3)) / (8192 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015 %F A022588 a(0) = 1, a(n) = (23/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 04 2017 %t A022588 nmax=50; CoefficientList[Series[Product[(1+q^m)^23,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *) %o A022588 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^23)) \\ _G. C. Greubel_, Feb 25 2018 %o A022588 (Magma) Coefficients(&*[(1+x^m)^23:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 25 2018 %Y A022588 Column k=23 of A286335. %K A022588 nonn %O A022588 0,2 %A A022588 _N. J. A. Sloane_