cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022589 Expansion of Product_{m>=1} (1 + q^m)^25.

This page as a plain text file.
%I A022589 #16 Sep 08 2022 08:44:46
%S A022589 1,25,325,2950,21100,126905,667850,3157725,13667175,54900675,
%T A022589 206841715,736953800,2499500175,8113694575,25320834800,76253908740,
%U A022589 222308896150,629146702350,1732518057650,4651937973250,12201443983695,31311905220800,78732034002275,194220161393825
%N A022589 Expansion of Product_{m>=1} (1 + q^m)^25.
%H A022589 G. C. Greubel, <a href="/A022589/b022589.txt">Table of n, a(n) for n = 0..1000</a>
%F A022589 a(n) ~ sqrt(5) * exp(5 * Pi * sqrt(n/3)) / (16384 * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015
%t A022589 nmax=50; CoefficientList[Series[Product[(1+q^m)^25,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *)
%o A022589 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^25)) \\ _G. C. Greubel_, Feb 25 2018
%o A022589 (Magma) Coefficients(&*[(1+x^m)^25:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 25 2018
%Y A022589 Column k=25 of A286335.
%K A022589 nonn
%O A022589 0,2
%A A022589 _N. J. A. Sloane_
%E A022589 Terms a(20) onward added by _G. C. Greubel_, Feb 25 2018