cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022590 Expansion of Product_{m>=1} (1+q^m)^26.

This page as a plain text file.
%I A022590 #15 Sep 08 2022 08:44:46
%S A022590 1,26,351,3302,24427,151658,822484,4001660,17799041,73391968,
%T A022590 283542740,1034983222,3593364255,11931569028,38062054017,117095671862,
%U A022590 348538604492,1006539781078,2827014674081,7738495452714,20683325376064,54066855041446,138427417637249,347584258977384
%N A022590 Expansion of Product_{m>=1} (1+q^m)^26.
%H A022590 G. C. Greubel, <a href="/A022590/b022590.txt">Table of n, a(n) for n = 0..1000</a>
%F A022590 a(n) ~ (13/6)^(1/4) * exp(Pi * sqrt(26*n/3)) / (16384 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015
%t A022590 nmax=50; CoefficientList[Series[Product[(1+q^m)^26,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *)
%o A022590 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^26)) \\ _G. C. Greubel_, Feb 19 2018
%o A022590 (Magma) Coefficients(&*[(1+x^m)^26:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 19 2018
%Y A022590 Column k=26 of A286335.
%K A022590 nonn
%O A022590 0,2
%A A022590 _N. J. A. Sloane_