cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022592 Expansion of Product_{m>=1} (1+q^m)^28.

This page as a plain text file.
%I A022592 #15 Sep 08 2022 08:44:46
%S A022592 1,28,406,4088,32249,212772,1222438,6283400,29454432,127721972,
%T A022592 517920340,1980864312,7194850761,24957519216,83064794746,266299577040,
%U A022592 825106028411,2477872472348,7230302637376,20543975496576,56949757063171,154281017250160,409072030569524
%N A022592 Expansion of Product_{m>=1} (1+q^m)^28.
%H A022592 G. C. Greubel, <a href="/A022592/b022592.txt">Table of n, a(n) for n = 0..1000</a>
%F A022592 a(n) ~ (7/3)^(1/4) * exp(2 * Pi * sqrt(7*n/3)) / (32768 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015
%t A022592 nmax=50; CoefficientList[Series[Product[(1+q^m)^28,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *)
%o A022592 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^28)) \\ _G. C. Greubel_, Feb 19 2018
%o A022592 (Magma) Coefficients(&*[(1+x^m)^28:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 19 2018
%Y A022592 Column k=28 of A286335.
%K A022592 nonn
%O A022592 0,2
%A A022592 _N. J. A. Sloane_