This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022593 #18 Sep 08 2022 08:44:46 %S A022593 1,29,435,4524,36801,249980,1476535,7792619,37464346,166445529, %T A022593 690898842,2702690003,10033022642,35545708813,120756549637, %U A022593 394935306099,1247670362782,3818503661392,11350088407317,32837741707782,92652254354675,255382893501050,688721602753864 %N A022593 Expansion of Product_{m>=1} (1+q^m)^29. %H A022593 G. C. Greubel, <a href="/A022593/b022593.txt">Table of n, a(n) for n = 0..1000</a> %F A022593 a(n) ~ (29/3)^(1/4) * exp(Pi * sqrt(29*n/3)) / (65536 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015 %t A022593 nmax=50; CoefficientList[Series[Product[(1+q^m)^29,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *) %o A022593 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^29)) \\ _G. C. Greubel_, Feb 19 2018 %o A022593 (PARI) q='q+O('q^99); Vec((eta(q^2)/eta(q))^29) \\ _Altug Alkan_, May 03 2018 %o A022593 (Magma) Coefficients(&*[(1+x^m)^29:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 19 2018 %Y A022593 Column k=29 of A286335. %K A022593 nonn %O A022593 0,2 %A A022593 _N. J. A. Sloane_