cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022594 Expansion of Product_{m>=1} (1+q^m)^30.

This page as a plain text file.
%I A022594 #15 Sep 08 2022 08:44:46
%S A022594 1,30,465,4990,41820,292236,1773325,9603210,47322525,215286380,
%T A022594 914269641,3656192760,13865226845,50148901590,173821904265,
%U A022594 579696375972,1866529110420,5819476726230,17613901516660,51870170192610,148909462006422,417468856858550,1144709400114480
%N A022594 Expansion of Product_{m>=1} (1+q^m)^30.
%H A022594 G. C. Greubel, <a href="/A022594/b022594.txt">Table of n, a(n) for n = 0..1000</a>
%F A022594 a(n) ~ (5/2)^(1/4) * exp(Pi * sqrt(10*n)) / (65536 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015
%t A022594 nmax=50; CoefficientList[Series[Product[(1+q^m)^30,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *)
%o A022594 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^30)) \\ _G. C. Greubel_, Feb 19 2018
%o A022594 (Magma) Coefficients(&*[(1+x^m)^30:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 19 2018
%Y A022594 Column k=30 of A286335.
%K A022594 nonn
%O A022594 0,2
%A A022594 _N. J. A. Sloane_