This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022595 #14 Sep 08 2022 08:44:46 %S A022595 1,31,496,5487,47337,340039,2118385,11763911,59384158,276491170, %T A022595 1200703594,4906332242,18998567031,70120824201,247873586247, %U A022595 842625902072,2764160465375,8776228494225,27038961793349,81019542614568,236575764828149,674366427736330,1879524499776454 %N A022595 Expansion of Product_{m >=1} (1+q^m)^31. %H A022595 G. C. Greubel, <a href="/A022595/b022595.txt">Table of n, a(n) for n = 0..1000</a> %F A022595 a(n) ~ (31/3)^(1/4) * exp(Pi * sqrt(31*n/3)) / (131072 * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015 %t A022595 nmax=50; CoefficientList[Series[Product[(1+q^m)^31,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *) %o A022595 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^31)) \\ _G. C. Greubel_, Mar 20 2018 %o A022595 (Magma) Coefficients(&*[(1+x^m)^31:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Mar 20 2018 %Y A022595 Column k=31 of A286335. %K A022595 nonn %O A022595 0,2 %A A022595 _N. J. A. Sloane_ %E A022595 Terms a(19) onward added by _G. C. Greubel_, Mar 20 2018