cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022596 Expansion of Product_{m>=1} (1+q^m)^32.

This page as a plain text file.
%I A022596 #21 Mar 24 2025 11:04:49
%S A022596 1,32,528,6016,53384,393920,2517824,14329600,74059812,352722720,
%T A022596 1565583648,6533812352,25823152256,97218393280,350348856704,
%U A022596 1213526698240,4054279504266,13103911398400,41081428394096,125210147216000,371754750363712,1077136199182976,3050503922469440
%N A022596 Expansion of Product_{m>=1} (1+q^m)^32.
%C A022596 In general, for k > 0, if g.f. = Product_{m>=1} (1+q^m)^k, then a(n) ~ k^(1/4) * exp(Pi * sqrt(k*n/3)) / (2^((k+3)/2) * 3^(1/4) * n^(3/4)) * (1 + (Pi*k^(3/2) / (48*sqrt(3)) - 3^(3/2) / (8*Pi*sqrt(k))) / sqrt(n)). - _Vaclav Kotesovec_, Mar 05 2015, extended Jan 16 2017
%H A022596 G. C. Greubel, <a href="/A022596/b022596.txt">Table of n, a(n) for n = 0..5000</a>
%F A022596 a(n) ~ exp(Pi * 4 * sqrt(2*n/3)) / (65536 * 6^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Mar 05 2015
%t A022596 nmax=50; CoefficientList[Series[Product[(1+q^m)^32,{m,1,nmax}],{q,0,nmax}],q] (* _Vaclav Kotesovec_, Mar 05 2015 *)
%o A022596 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^32)) \\ _G. C. Greubel_, Mar 20 2018
%o A022596 (Magma) Coefficients(&*[(1+x^m)^32:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Mar 20 2018
%Y A022596 Column k=32 of A286335.
%K A022596 nonn
%O A022596 0,2
%A A022596 _N. J. A. Sloane_
%E A022596 Terms a(19) onward added by _G. C. Greubel_, Mar 20 2018