This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022634 #13 Sep 08 2022 08:44:46 %S A022634 1,6,27,110,387,1266,3896,11340,31629,84992,221028,558450,1375615, %T A022634 3310764,7803069,18044374,40998078,91653990,201842383,438312534, %U A022634 939439674,1988944070,4162521165,8617025112,17655688602,35823617658,72015578091,143499705550,283544586489,555779906772 %N A022634 Expansion of Product_{m>=1} (1 + m*q^m)^6. %H A022634 G. C. Greubel, <a href="/A022634/b022634.txt">Table of n, a(n) for n = 0..1000</a> %F A022634 G.f.: exp(6*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 08 2018 %t A022634 With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^6, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *) %o A022634 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^6)) \\ _G. C. Greubel_, Feb 17 2018 %o A022634 (Magma) Coefficients(&*[(1+m*x^m)^6:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018 %Y A022634 Column k=6 of A297321. %K A022634 nonn %O A022634 0,2 %A A022634 _N. J. A. Sloane_