This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022635 #12 Sep 08 2022 08:44:46 %S A022635 1,7,35,154,588,2065,6790,21071,62447,177863,489279,1305402,3389603, %T A022635 8587999,21280436,51674728,123161500,288539664,665292642,1511359766, %U A022635 3386065697,7488093282,16357998447,35324428405,75453678433,159512035137,333918915120,692516812176,1423479123640 %N A022635 Expansion of Product_{m>=1} (1 + m*q^m)^7. %H A022635 G. C. Greubel, <a href="/A022635/b022635.txt">Table of n, a(n) for n = 0..1000</a> %F A022635 G.f.: exp(7*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 08 2018 %t A022635 With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^7, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *) %o A022635 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^7)) \\ _G. C. Greubel_, Feb 17 2018 %o A022635 (Magma) Coefficients(&*[(1+m*x^m)^7:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018 %Y A022635 Column k=7 of A297321. %K A022635 nonn %O A022635 0,2 %A A022635 _N. J. A. Sloane_