This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022636 #13 Sep 08 2022 08:44:46 %S A022636 1,8,44,208,854,3200,11176,36752,115089,345600,1000484,2804544, %T A022636 7639718,20280672,52593032,133509840,332340788,812455304,1953140484, %U A022636 4622589504,10782030284,24807035200,56345836888,126438750160,280490520517,615512622608,1336825948592,2875079590304 %N A022636 Expansion of Product_{m>=1} (1 + m*q^m)^8. %H A022636 G. C. Greubel, <a href="/A022636/b022636.txt">Table of n, a(n) for n = 0..1000</a> %F A022636 G.f.: exp(8*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 08 2018 %t A022636 With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^8, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *) %o A022636 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^8)) \\ _G. C. Greubel_, Feb 17 2018 %o A022636 (Magma) Coefficients(&*[(1+m*x^m)^8:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018 %Y A022636 Column k=8 of A297321. %K A022636 nonn %O A022636 0,2 %A A022636 _N. J. A. Sloane_