This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022638 #16 Sep 08 2022 08:44:46 %S A022638 1,10,65,350,1630,6852,26635,97030,334990,1104730,3500740,10710950, %T A022638 31763985,91589730,257459110,707115814,1901162925,5011993330, %U A022638 12974420315,33021646490,82723179433,204175881220,496953703885,1193736868990,2832017802500,6639914803684 %N A022638 Expansion of Product_{m>=1} (1 + m*q^m)^10. %H A022638 G. C. Greubel, <a href="/A022638/b022638.txt">Table of n, a(n) for n = 0..1000</a> %p A022638 [seq(coeff(series(mul((1+m*q^m)^(10), m=1..100),q,101),q,j),j=0..25)]; # _Muniru A Asiru_, Feb 18 2018 %t A022638 With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^10, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *) %o A022638 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^10)) \\ _G. C. Greubel_, Feb 17 2018 %o A022638 (Magma) Coefficients(&*[(1+m*x^m)^10:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018 %Y A022638 Column k=10 of A297321. %K A022638 nonn %O A022638 0,2 %A A022638 _N. J. A. Sloane_