This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022639 #16 Sep 08 2022 08:44:46 %S A022639 1,11,77,440,2167,9592,39127,149237,538329,1851674,6111171,19448573, %T A022639 59922709,179331603,522723740,1487454914,4140279660,11292030255, %U A022639 30221623905,79475723767,205600559461,523762010695,1315113742769,3257405396388,7964974336693,19239590761567 %N A022639 Expansion of Product_{m>=1} (1 + m*q^m)^11. %H A022639 G. C. Greubel, <a href="/A022639/b022639.txt">Table of n, a(n) for n = 0..1000</a> %p A022639 [seq(coeff(series(mul((1+m*q^m)^(11), m=1..100),q,101),q,j),j=0..25)]; # _Muniru A Asiru_, Feb 18 2018 %t A022639 With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^11, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *) %o A022639 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^11)) \\ _G. C. Greubel_, Feb 17 2018 %o A022639 (Magma) Coefficients(&*[(1+m*x^m)^11:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018 %Y A022639 Column k=11 of A297321. %K A022639 nonn %O A022639 0,2 %A A022639 _N. J. A. Sloane_