cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022642 Expansion of Product_{m>=1} (1 + m*q^m)^14.

This page as a plain text file.
%I A022642 #16 Sep 08 2022 08:44:46
%S A022642 1,14,119,798,4557,23142,107366,462856,1876952,7224714,26579063,
%T A022642 93966992,320651170,1059923690,3404112479,10649329250,32521525967,
%U A022642 97132069090,284187808429,815681830796,2299630643723,6375380037894,17398106046384,46777705917502,124014391872203,324432027054226
%N A022642 Expansion of Product_{m>=1} (1 + m*q^m)^14.
%H A022642 G. C. Greubel, <a href="/A022642/b022642.txt">Table of n, a(n) for n = 0..1000</a>
%p A022642 [seq(coeff(series(mul((1+m*q^m)^(14), m=1..100),q,101),q,j),j=0..25)]; # _Muniru A Asiru_, Feb 18 2018
%t A022642 With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^14, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *)
%o A022642 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^14)) \\ _G. C. Greubel_, Feb 17 2018
%o A022642 (Magma) Coefficients(&*[(1+m*x^m)^14:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018
%Y A022642 Column k=14 of A297321.
%K A022642 nonn
%O A022642 0,2
%A A022642 _N. J. A. Sloane_