This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022643 #18 Sep 08 2022 08:44:46 %S A022643 1,15,135,950,5670,30003,144680,647055,2717760,10820640,41128374, %T A022643 150073470,528074655,1798537380,5947216050,19142919543,60113026305, %U A022643 184513760775,554517086825,1634047143090,4727605374594,13444544485435,37620762642885,103678546403985,281639925782930 %N A022643 Expansion of Product_{m>=1} (1 + m*q^m)^15. %H A022643 G. C. Greubel, <a href="/A022643/b022643.txt">Table of n, a(n) for n = 0..1000</a> %p A022643 [seq(coeff(series(mul((1+m*q^m)^(15), m=1..100),q,101),q,j),j=0..25)]; # _Muniru A Asiru_, Feb 18 2018 %t A022643 With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^15, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *) %o A022643 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^15)) \\ _G. C. Greubel_, Feb 17 2018 %o A022643 (Magma) Coefficients(&*[(1+m*x^m)^15:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018 %Y A022643 Column k=15 of A297321. %K A022643 nonn %O A022643 0,2 %A A022643 _N. J. A. Sloane_