cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022644 Expansion of Product_{m>=1} (1 + m*q^m)^16.

This page as a plain text file.
%I A022644 #18 Sep 08 2022 08:44:46
%S A022644 1,16,152,1120,6972,38368,191968,889184,3862214,15881616,62275840,
%T A022644 234205472,848652120,2974133152,10112507808,33448941824,107874784017,
%U A022644 339879773648,1047953793136,3166817754880,9391718326404,27366626142688,78435144301696,221322772710464,615375631077094
%N A022644 Expansion of Product_{m>=1} (1 + m*q^m)^16.
%H A022644 G. C. Greubel, <a href="/A022644/b022644.txt">Table of n, a(n) for n = 0..1000</a>
%p A022644 [seq(coeff(series(mul((1+m*q^m)^(16), m=1..100),q,101),q,j),j=0..25)]; # _Muniru A Asiru_, Feb 18 2018
%t A022644 With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^16, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *)
%o A022644 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^16)) \\ _G. C. Greubel_, Feb 17 2018
%o A022644 (Magma) Coefficients(&*[(1+m*x^m)^16:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018
%Y A022644 Column k=16 of A297321.
%K A022644 nonn
%O A022644 0,2
%A A022644 _N. J. A. Sloane_