cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022645 Expansion of Product_{m>=1} (1 + m*q^m)^17.

This page as a plain text file.
%I A022645 #20 Sep 08 2022 08:44:46
%S A022645 1,17,170,1309,8483,48467,251209,1203311,5397330,22890874,92481394,
%T A022645 358011602,1334253585,4805716553,16782510007,56979399970,188517704002,
%U A022645 609021410570,1924506074441,5957712195945,18092683604856,53965253533463,158264095730459,456803437466434,1298781701177781
%N A022645 Expansion of Product_{m>=1} (1 + m*q^m)^17.
%H A022645 G. C. Greubel, <a href="/A022645/b022645.txt">Table of n, a(n) for n = 0..1000</a>
%p A022645 [seq(coeff(series(mul((1+m*q^m)^(17), m=1..100),q,101),q,j),j=0..25)]; # _Muniru A Asiru_, Feb 18 2018
%t A022645 With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^17, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *)
%o A022645 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^17)) \\ _G. C. Greubel_, Feb 17 2018
%o A022645 (Magma) Coefficients(&*[(1+m*x^m)^17:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018
%Y A022645 Column k=17 of A297321.
%K A022645 nonn
%O A022645 0,2
%A A022645 _N. J. A. Sloane_