This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022646 #20 Sep 08 2022 08:44:46 %S A022646 1,18,189,1518,10224,60552,324657,1606050,7429455,32458628,134950419, %T A022646 537136776,2056614597,7604901990,27248140107,94861629852,321652565253, %U A022646 1064430256536,3443952349385,10911585508344,33900910277472,103410118026774,310042892332701,914572545220908 %N A022646 Expansion of Product_{m>=1} (1 + m*q^m)^18. %H A022646 G. C. Greubel, <a href="/A022646/b022646.txt">Table of n, a(n) for n = 0..1000</a> %p A022646 [seq(coeff(series(mul((1+m*q^m)^(18), m=1..100),q,101),q,j),j=0..25)]; # _Muniru A Asiru_, Feb 18 2018 %t A022646 With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^18, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *) %o A022646 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^18)) \\ _G. C. Greubel_, Feb 17 2018 %o A022646 (Magma) Coefficients(&*[(1+m*x^m)^18:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018 %Y A022646 Column k=18 of A297321. %K A022646 nonn %O A022646 0,2 %A A022646 _N. J. A. Sloane_