This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022647 #16 Sep 08 2022 08:44:46 %S A022647 1,19,209,1748,12217,74898,414865,2116885,10087480,45348041,193814402, %T A022647 792340831,3113639744,11808753973,43368768307,154674601937, %U A022647 537009888061,1818759910067,6019901796578,19503777943838,61940839239196,193067981970548,591298084019937 %N A022647 Expansion of Product_{m>=1} (1 + m*q^m)^19. %H A022647 G. C. Greubel, <a href="/A022647/b022647.txt">Table of n, a(n) for n = 0..1000</a> %p A022647 [seq(coeff(series(mul((1+m*q^m)^(19), m=1..100),q,101),q,j),j=0..25)]; # _Muniru A Asiru_, Feb 18 2018 %t A022647 With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^19, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *) %o A022647 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^19)) \\ _G. C. Greubel_, Feb 17 2018 %o A022647 (Magma) Coefficients(&*[(1+m*x^m)^19:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018 %Y A022647 Column k=19 of A297321. %K A022647 nonn %O A022647 0,2 %A A022647 _N. J. A. Sloane_