This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022648 #16 Sep 08 2022 08:44:46 %S A022648 1,20,230,2000,14485,91804,524710,2758520,13526430,62505180,274345784, %T A022648 1150868440,4637343915,18022311520,67785066390,247453832688, %U A022648 878947211030,3044142764520,10299271911850,34095293204360,110599636109572,351997976703180,1100401056566170 %N A022648 Expansion of Product_{m>=1} (1 + m*q^m)^20. %H A022648 G. C. Greubel, <a href="/A022648/b022648.txt">Table of n, a(n) for n = 0..1000</a> %p A022648 [seq(coeff(series(mul((1+m*q^m)^(20), m=1..100),q,101),q,j),j=0..25)]; # _Muniru A Asiru_, Feb 18 2018 %t A022648 With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^20, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *) %o A022648 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^20)) \\ _G. C. Greubel_, Feb 17 2018 %o A022648 (Magma) Coefficients(&*[(1+m*x^m)^20:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018 %Y A022648 Column k=20 of A297321. %K A022648 nonn %O A022648 0,2 %A A022648 _N. J. A. Sloane_