cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022650 Expansion of Product_{m>=1} (1+m*q^m)^22.

This page as a plain text file.
%I A022650 #9 Sep 08 2022 08:44:46
%S A022650 1,22,275,2574,19943,134618,816596,4543396,23522279,114532572,
%T A022650 528773278,2329635750,9845310101,40080724376,157739993037,
%U A022650 601928809878,2232820512417,8069089487932,28463636262974,98170848275720,331548644228131,1097891113532048,3568885868192419
%N A022650 Expansion of Product_{m>=1} (1+m*q^m)^22.
%H A022650 G. C. Greubel, <a href="/A022650/b022650.txt">Table of n, a(n) for n = 0..1000</a>
%t A022650 With[{nmax=50}, CoefficientList[Series[Product[(1+m*q^m)^22,{m,1,nmax}],{q,0,nmax}],q]] (* _G. C. Greubel_, Mar 20 2018 *)
%o A022650 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^22)) \\ _G. C. Greubel_, Mar 20 2018
%o A022650 (Magma) Coefficients(&*[(1+m*x^m)^22:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Mar 20 2018
%K A022650 nonn
%O A022650 0,2
%A A022650 _N. J. A. Sloane_
%E A022650 Terms a(19) onward added by _G. C. Greubel_, Mar 20 2018