This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022664 #25 Sep 08 2022 08:44:46 %S A022664 1,-4,-2,16,9,4,-90,-56,12,60,700,232,-51,-1128,-2006,-3648,-2999, %T A022664 6292,12004,19192,8829,35024,-43368,-92480,-113859,-227356,-33906, %U A022664 55072,569221,631620,1193412,1593152,1178350,-2589588,-4131366,-6312376,-12864282,-6891608,-10022026,10270984 %N A022664 Expansion of Product_{m>=1} (1 - m*q^m)^4. %C A022664 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -4, g(n) = n. - _Seiichi Manyama_, Dec 29 2017 %H A022664 Seiichi Manyama, <a href="/A022664/b022664.txt">Table of n, a(n) for n = 0..1000</a> %F A022664 G.f.: exp(-4*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 07 2018 %t A022664 With[{nmax=34}, CoefficientList[Series[Product[(1-k*q^k)^4, {k,1,nmax}], {q, 0, nmax}],q]] (* _G. C. Greubel_, Feb 23 2018 *) %o A022664 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^4)) \\ _G. C. Greubel_, Feb 23 2018 %o A022664 (Magma) Coefficients(&*[(1-m*x^m)^4:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 23 2018 %Y A022664 Column k=4 of A297323. %K A022664 sign %O A022664 0,2 %A A022664 _N. J. A. Sloane_ %E A022664 More terms added by _G. C. Greubel_, Feb 23 2018