cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022666 Expansion of Product_{m>=1} (1 - m*q^m)^6.

This page as a plain text file.
%I A022666 #13 Sep 08 2022 08:44:46
%S A022666 1,-6,3,34,-21,-66,-168,180,645,176,540,-3282,-4265,-1068,5805,21226,
%T A022666 16398,27498,-42993,-139110,-199998,-46374,127917,467016,1424954,
%U A022666 881958,895899,-2559102,-5166543,-9792708,-11899179,5560560,13493076,39293062,65560674,94059054,14988615
%N A022666 Expansion of Product_{m>=1} (1 - m*q^m)^6.
%H A022666 G. C. Greubel, <a href="/A022666/b022666.txt">Table of n, a(n) for n = 0..1000</a>
%F A022666 G.f.: exp(-6*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 07 2018
%t A022666 With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^6, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 24 2018 *)
%o A022666 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^6)) \\ _G. C. Greubel_, Feb 24 2018
%o A022666 (Magma) Coefficients(&*[(1-m*x^m)^6:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 24 2018
%Y A022666 Column k=6 of A297323.
%K A022666 sign
%O A022666 0,2
%A A022666 _N. J. A. Sloane_
%E A022666 Terms a(31) onward added by _G. C. Greubel_, Feb 24 2018