This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022668 #13 Sep 08 2022 08:44:46 %S A022668 1,-8,12,48,-106,-128,8,880,1041,-2560,-2524,-6720,5030,30880,26696, %T A022668 9264,-136524,-152456,-172604,37824,938316,1568960,1225624,-1981904, %U A022668 -4585531,-10791440,-8363184,2558560,29452194,67002976,59590976,77029104,-140261287,-367505912,-536229932 %N A022668 Expansion of Product_{m>=1} (1 - m*q^m)^8. %H A022668 G. C. Greubel, <a href="/A022668/b022668.txt">Table of n, a(n) for n = 0..1000</a> %F A022668 G.f.: exp(-8*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 07 2018 %t A022668 With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^8, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 24 2018 *) %o A022668 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^8)) \\ _G. C. Greubel_, Feb 24 2018 %o A022668 (Magma) Coefficients(&*[(1-m*x^m)^8:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 24 2018 %Y A022668 Column k=8 of A297323. %K A022668 sign %O A022668 0,2 %A A022668 _N. J. A. Sloane_ %E A022668 Terms a(30) onward added by _G. C. Greubel_, Feb 24 2018