cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022670 Expansion of Product_{m >= 1} (1-m*q^m)^10.

This page as a plain text file.
%I A022670 #11 Sep 08 2022 08:44:46
%S A022670 1,-10,25,50,-250,-52,595,1450,-770,-9370,12,9210,38385,50190,-104650,
%T A022670 -203158,-345955,350830,1246115,1308710,1371409,-3990420,-10109715,
%U A022670 -14469950,3243700,36855516,73365400,87802340,-21636795,-221067620,-594991713,-478204790,-217756880,1095013900
%N A022670 Expansion of Product_{m >= 1} (1-m*q^m)^10.
%H A022670 G. C. Greubel, <a href="/A022670/b022670.txt">Table of n, a(n) for n = 0..1000</a>
%t A022670 With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^10, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 24 2018 *)
%o A022670 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^10)) \\ _G. C. Greubel_, Feb 24 2018
%o A022670 (Magma) Coefficients(&*[(1-m*x^m)^10:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 24 2018
%K A022670 sign
%O A022670 0,2
%A A022670 _N. J. A. Sloane_
%E A022670 Terms a(29) onward added by _G. C. Greubel_, Feb 24 2018