cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022672 Expansion of Product_{m >= 1} (1-m*q^m)^12.

This page as a plain text file.
%I A022672 #12 Sep 08 2022 08:44:46
%S A022672 1,-12,42,32,-441,324,1486,552,-5925,-14960,26490,46488,23436,-86940,
%T A022672 -454572,-84008,650589,2512344,2002056,-5360256,-9309792,-16236104,
%U A022672 3738294,49969488,106062099,90950460,-166391628,-472579032,-780853359,-269428512,1218718846,4153700664,5179581558
%N A022672 Expansion of Product_{m >= 1} (1-m*q^m)^12.
%H A022672 G. C. Greubel, <a href="/A022672/b022672.txt">Table of n, a(n) for n = 0..1000</a>
%t A022672 With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^12, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 24 2018 *)
%o A022672 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^12)) \\ _G. C. Greubel_, Feb 24 2018
%o A022672 (Magma) Coefficients(&*[(1-m*x^m)^12:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 24 2018
%K A022672 sign
%O A022672 0,2
%A A022672 _N. J. A. Sloane_
%E A022672 Terms a(27) onward added by _G. C. Greubel_, Feb 24 2018