cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022678 Expansion of Product_{m>=1} (1-m*q^m)^18.

This page as a plain text file.
%I A022678 #9 Sep 08 2022 08:44:46
%S A022678 1,-18,117,-222,-936,4680,-951,-23634,4815,89692,170019,-583992,
%T A022678 -1009011,1753434,3755619,3911748,-16001739,-35135352,6931209,
%U A022678 99524520,287076168,-92384118,-969330771,-1271547612,-41096046
%N A022678 Expansion of Product_{m>=1} (1-m*q^m)^18.
%H A022678 G. C. Greubel, <a href="/A022678/b022678.txt">Table of n, a(n) for n = 0..1000</a>
%t A022678 With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^18, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 18 2018 *)
%o A022678 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^18)) \\ _G. C. Greubel_, Jul 18 2018
%o A022678 (Magma) Coefficients(&*[(1-m*x^m)^18:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Jul 18 2018
%K A022678 sign
%O A022678 0,2
%A A022678 _N. J. A. Sloane_