cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022682 Expansion of Product_{m>=1} (1-m*q^m)^22.

This page as a plain text file.
%I A022682 #14 Sep 08 2022 08:44:46
%S A022682 1,-22,187,-638,-561,10582,-20460,-44132,157311,154132,-468666,
%T A022682 -1959718,2247421,12556104,-8229859,-41049558,-43660639,121417780,
%U A022682 408706870,-100429384,-1145215709,-2659879552,853739235,13377528824
%N A022682 Expansion of Product_{m>=1} (1-m*q^m)^22.
%H A022682 G. C. Greubel, <a href="/A022682/b022682.txt">Table of n, a(n) for n = 0..1000</a>
%p A022682 seq(coeff(series(mul((1-m*x^m)^22,m=1..n), x,n+1),x,n),n=0..30); # _Muniru A Asiru_, Jul 19 2018
%t A022682 With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^22, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 19 2018 *)
%o A022682 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^22)) \\ _G. C. Greubel_, Jul 19 2018
%o A022682 (Magma) Coefficients(&*[(1-m*x^m)^22:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Jul 19 2018
%K A022682 sign
%O A022682 0,2
%A A022682 _N. J. A. Sloane_