cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022687 Expansion of Product_{m>=1} (1-m*q^m)^27.

This page as a plain text file.
%I A022687 #10 Sep 08 2022 08:44:46
%S A022687 1,-27,297,-1548,2079,18036,-88893,42471,632259,-1042392,-2491695,
%T A022687 3171771,19897479,-6178491,-149788494,40753548,598051971,397032246,
%U A022687 -1758684468,-5331986973,4009289778,22014953235
%N A022687 Expansion of Product_{m>=1} (1-m*q^m)^27.
%H A022687 G. C. Greubel, <a href="/A022687/b022687.txt">Table of n, a(n) for n = 0..1000</a>
%t A022687 With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^27, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 19 2018 *)
%o A022687 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^27)) \\ _G. C. Greubel_, Jul 19 2018
%o A022687 (Magma) Coefficients(&*[(1-m*x^m)^27:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Jul 19 2018
%K A022687 sign
%O A022687 0,2
%A A022687 _N. J. A. Sloane_