cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022689 Expansion of Product_{m>=1} (1-m*q^m)^29.

This page as a plain text file.
%I A022689 #10 Sep 08 2022 08:44:46
%S A022689 1,-29,348,-2059,4234,19024,-133545,168954,832532,-2499510,-2308545,
%T A022689 11279782,22571454,-55885088,-217574356,383141127,1062928416,
%U A022689 -961984578,-4860016156,-3840850828,23405599444
%N A022689 Expansion of Product_{m>=1} (1-m*q^m)^29.
%H A022689 G. C. Greubel, <a href="/A022689/b022689.txt">Table of n, a(n) for n = 0..1000</a>
%t A022689 With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^29, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 19 2018 *)
%o A022689 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^29)) \\ _G. C. Greubel_, Jul 19 2018
%o A022689 (Magma) Coefficients(&*[(1-m*x^m)^29:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Jul 19 2018
%K A022689 sign
%O A022689 0,2
%A A022689 _N. J. A. Sloane_