This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022727 #19 Sep 08 2022 08:44:46 %S A022727 1,3,12,37,114,312,855,2178,5496,13302,31719,73482,168086,375984, %T A022727 830976,1805887,3880746,8225460,17262440,35809446,73621776,149875003, %U A022727 302635110,605861124,1204043358,2374645746 %N A022727 Expansion of Product_{m>=1} (1-m*q^m)^-3. %C A022727 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 3, g(n) = n. - _Seiichi Manyama_, Dec 29 2017 %H A022727 Seiichi Manyama, <a href="/A022727/b022727.txt">Table of n, a(n) for n = 0..1000</a> %F A022727 G.f.: exp(3*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 07 2018 %t A022727 With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^-3, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 25 2018 *) %o A022727 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^-3)) \\ _G. C. Greubel_, Jul 25 2018 %o A022727 (Magma) n:=50; R<x>:=PowerSeriesRing(Integers(), n); Coefficients(R!(&*[(1/(1-m*x^m))^3:m in [1..n]])); // _G. C. Greubel_, Jul 25 2018 %Y A022727 Column k=3 of A297328. %K A022727 nonn %O A022727 0,2 %A A022727 _N. J. A. Sloane_