This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022728 #19 Sep 08 2022 08:44:46 %S A022728 1,4,18,64,219,676,2030,5736,15793,41864,108430,273240,675526,1634780, %T A022728 3891960,9108872,21018870,47815572,107446898,238524144,523812125, %U A022728 1138233100,2449710880,5223395480,11042278208 %N A022728 Expansion of Product_{m>=1} (1-m*q^m)^-4. %C A022728 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 4, g(n) = n. - _Seiichi Manyama_, Dec 29 2017 %H A022728 Seiichi Manyama, <a href="/A022728/b022728.txt">Table of n, a(n) for n = 0..1000</a> %F A022728 G.f.: exp(4*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 07 2018 %t A022728 With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^-4, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 25 2018 *) %o A022728 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^-4)) \\ _G. C. Greubel_, Jul 25 2018 %o A022728 (Magma) n:=50; R<x>:=PowerSeriesRing(Integers(), n); Coefficients(R!(&*[(1/(1-m*x^m))^4:m in [1..n]])); // _G. C. Greubel_, Jul 25 2018 %Y A022728 Column k=4 of A297328. %K A022728 nonn %O A022728 0,2 %A A022728 _N. J. A. Sloane_