cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022729 Expansion of Product_{m>=1} 1/(1 - m*q^m)^5.

This page as a plain text file.
%I A022729 #12 Sep 08 2022 08:44:46
%S A022729 1,5,25,100,375,1276,4155,12775,37935,108460,301533,815075,2153995,
%T A022729 5567685,14123030,35183376,86259665,208293520,496100890,1166243015,
%U A022729 2708878924,6220640495,14134118490,31792023545
%N A022729 Expansion of Product_{m>=1} 1/(1 - m*q^m)^5.
%H A022729 G. C. Greubel, <a href="/A022729/b022729.txt">Table of n, a(n) for n = 0..1000</a>
%F A022729 G.f.: exp(5*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 07 2018
%t A022729 With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^-5, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 25 2018 *)
%o A022729 (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^-5)) \\ _G. C. Greubel_, Jul 25 2018
%o A022729 (Magma) n:=50; R<x>:=PowerSeriesRing(Integers(), n); Coefficients(R!(&*[(1/(1-m*x^m))^5:m in [1..n]])); // _G. C. Greubel_, Jul 25 2018
%Y A022729 Column k=5 of A297328.
%K A022729 nonn
%O A022729 0,2
%A A022729 _N. J. A. Sloane_