This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022811 #43 Jan 28 2020 16:09:32 %S A022811 1,1,3,6,13,23,44,74,129,210,345,542,858,1310,2004,2996,4467,6540, %T A022811 9552,13744,19711,27943,39452,55172,76865,106200,146173,199806,272075, %U A022811 368247,496642,666201,890602,1184957,1571417,2075058,2731677,3582119,4683595,6102256 %N A022811 Number of terms in n-th derivative of a function composed with itself 3 times. %C A022811 This also counts a restricted set of plane partitions of n. Each element of the set which contains the A000041(n) partitions of n can be converted into plane partitions by insertion of line feeds at some or all places of the "pluses." Since the length of rows in plane partitions must be nonincreasing, there are only A000041(L(P)) ways to comply with this rule, where L(P) is the number of terms in that particular partition. Example for n=4: consider all five partitions 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1 of four. The associated a(4)=13 plane partitions are 4, 31, 3|1, 22, 2|2, 211, 21|1, 2|1|1, 1111, 111|1, 11|11, 11|1|1 and 1|1|1|1, where the bar represents start of the next row, where a(4) = A000041(L(4)) + A000041(L(3+1)) + A000041(L(2+2)) + A000041(L(2+1+1))+ A000041(L(1+1+1+1)) = A000041(1) + A000041(2) + A000041(2) + A000041(3) + A000041(4). By construction from sorted partitions, all the plane partitions are strictly decreasing along each row and each column. - _R. J. Mathar_, Aug 12 2008 %C A022811 Also the number of pairs of integer partitions, the first with sum n and the second with sum equal to the length of the first. - _Gus Wiseman_, Jul 19 2018 %D A022811 W. C. Yang, Derivatives of self-compositions of functions, preprint, 1997. %H A022811 Alois P. Heinz, <a href="/A022811/b022811.txt">Table of n, a(n) for n = 0..3000</a> (terms n = 501..959 from Vaclav Kotesovec) %H A022811 W. C. Yang, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00412-4">Derivatives are essentially integer partitions</a>, Discrete Mathematics, 222(1-3), July 2000, 235-245. %F A022811 If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = Sum_{i=0..m} p(m,i)*a(n-1,i). %F A022811 G.f.: Sum_{k>=0} p(k) * x^k / Product_{j=1..k} (1 - x^j), where p(k) = number of partitions of k. - _Ilya Gutkovskiy_, Jan 28 2020 %e A022811 From _Gus Wiseman_, Jul 19 2018: (Start) %e A022811 Using the chain rule, we compute the second derivative of f(f(f(x))) to be the following sum of a(2) = 3 terms. %e A022811 d^2/dx^2 f(f(f(x))) = %e A022811 f'(f(x)) f'(f(f(x))) f''(x) + %e A022811 f'(x)^2 f'(f(f(x))) f''(f(x)) + %e A022811 f'(x)^2 f'(f(x))^2 f''(f(f(x))). %e A022811 (End) %p A022811 A022811 := proc(n) local a,P,p,lp ; a := 0 ; P := combinat[partition](n) ; for p in P do lp := nops(p) ; a := a+combinat[numbpart](lp) ; od: RETURN(a) ; end: for n from 1 do print(n,A022811(n)) ; od: # _R. J. Mathar_, Aug 12 2008 %t A022811 a[n_] := Total[PartitionsP[Length[#]]& /@ IntegerPartitions[n]]; %t A022811 Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 80}] (* _Jean-François Alcover_, Apr 28 2017 *) %t A022811 Table[Length[1+D[f[f[f[x]]],{x,n}]]-1,{n,10}] (* _Gus Wiseman_, Jul 19 2018 *) %Y A022811 Column k=3 of A022818. %Y A022811 First column of A039805. %Y A022811 A row or column of A081718. %Y A022811 Cf. A008778, A022812, A022813, A022814, A022815, A022816, A022817, A024207, A024208, A024209, A024210, A131408. %K A022811 nonn %O A022811 0,3 %A A022811 Winston C. Yang (yang(AT)math.wisc.edu) %E A022811 Typo corrected by Neven Juric, Mar 25 2013