This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022825 #26 Feb 21 2022 09:53:01 %S A022825 1,1,2,3,4,6,7,9,11,13,14,19,20,22,25,29,30,36,37,42,45,47,48,60,62, %T A022825 64,68,73,74,84,85,93,96,98,101,119,120,122,125,137,138,148,149,154, %U A022825 162,164,165,193,195,201,204,209,210,226,229,241,244,246,247,278,279 %N A022825 a(n) = a([ n/2 ]) + a([ n/3 ]) + . . . + a([ n/n ]) for n > 1, a(1) = 1. %H A022825 Ivan Neretin, <a href="/A022825/b022825.txt">Table of n, a(n) for n = 1..10000</a> %F A022825 G.f. A(x) satisfies: A(x) = x + (1/(1 - x)) * Sum_{k>=2} (1 - x^k) * A(x^k). - _Ilya Gutkovskiy_, Feb 21 2022 %p A022825 a:= proc(n) option remember; `if`(n<2, 1, %p A022825 add(a(iquo(n,j)), j=2..n)) %p A022825 end: %p A022825 seq(a(n), n=1..63); # _Alois P. Heinz_, Mar 31 2021 %t A022825 Fold[Append[#1, Total[#1[[Quotient[#2, Range[2, #2]]]]]] &, {1}, Range[2, 60]] (* _Ivan Neretin_, Aug 24 2016 *) %o A022825 (Python) %o A022825 from functools import lru_cache %o A022825 @lru_cache(maxsize=None) %o A022825 def A022825(n): %o A022825 if n <= 1: %o A022825 return n %o A022825 c, j = 0, 2 %o A022825 k1 = n//j %o A022825 while k1 > 1: %o A022825 j2 = n//k1 + 1 %o A022825 c += (j2-j)*A022825(k1) %o A022825 j, k1 = j2, n//j2 %o A022825 return c+n+1-j # _Chai Wah Wu_, Mar 31 2021 %Y A022825 Cf. A025523, A078346, A345182. %K A022825 nonn %O A022825 1,3 %A A022825 _Clark Kimberling_ %E A022825 Offset corrected by _Alois P. Heinz_, Mar 31 2021