A333122 Numbers m such that m = prime(k) + prime(k+5) = prime(k+1) + prime(k+4) for some k.
24, 30, 60, 84, 102, 210, 234, 288, 330, 378, 420, 426, 496, 528, 588, 594, 624, 690, 1050, 1156, 1200, 1218, 1302, 1336, 1410, 1470, 1484, 1638, 1650, 1680, 1686, 1716, 1734, 1740, 1746, 1788, 1848, 1908, 1918, 1930, 2052, 2154, 2226, 2364, 2410, 2580, 2892, 2934, 3168, 3524, 4080
Offset: 1
Keywords
Examples
a(1)=24 because prime(3)+prime(8)=prime(4)+prime(7)=5+19=7+17.
Programs
-
Mathematica
(#[[1]] + #[[6]]) & /@ Select[ Partition[ Prime@ Range@ 320, 6, 1], #[[1]] + #[[6]] == #[[2]] + #[[5]] &] (* Giovanni Resta, Mar 08 2020 *)
-
Python
from sympy import nextprime A333122_list, plist = [], [2,3,5,7,11,13] while len(A333122_list) < 10000: m = plist[0]+plist[5] if m == plist[1]+plist[4]: A333122_list.append(m) plist = plist[1:] + [nextprime(plist[-1])] # Chai Wah Wu, Mar 30 2020
Comments