A022907 The sequence m(n) in A022905.
0, 2, 5, 8, 14, 20, 29, 38, 53, 68, 89, 110, 140, 170, 209, 248, 302, 356, 425, 494, 584, 674, 785, 896, 1037, 1178, 1349, 1520, 1730, 1940, 2189, 2438, 2741, 3044, 3401, 3758, 4184, 4610, 5105, 5600, 6185, 6770, 7445, 8120, 8906, 9692, 10589
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- J. M. Dover, On two OEIS conjectures, arXiv:1606.08033 [math.CO], 2016.
Programs
-
Mathematica
a123[n_] := a123[n] = If[n == 0, 1, a123[Floor[n/2]] + a123[n-1]]; a[n_] := If[n == 1, 0, (3/2) a123[n-1] - 1]; Array[a, 50] (* Jean-François Alcover, Dec 04 2018 *)
-
Python
from itertools import islice from collections import deque def A022907_gen(): # generator of terms aqueue, f, b, a = deque([2]), True, 1, 2 yield from (0, 2, 5) while True: a += b yield 3*a-1 aqueue.append(a) if f: b = aqueue.popleft() f = not f A022907_list = list(islice(A022907_gen(),40)) # Chai Wah Wu, Jun 08 2022
Formula
a(n) = 3 * A033485(n-1) - 1 = (3/2) * A000123(n-1) - 1, n>1. Proved by Jeremy Dover. - Ralf Stephan, Dec 08 2004