cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022923 Number of integers m such that 7^n < 2^m < 7^(n+1).

This page as a plain text file.
%I A022923 #11 Mar 01 2024 06:24:12
%S A022923 2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,3,2,3,3,
%T A022923 3,3,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,3,2,3,3,3,3,2,3,3,3,3,2,
%U A022923 3,3,3,3,2,3,3,3,3,2,3,3,3,3,3,2,3,3,3,3,2,3,3,3,3,2,3,3,3,3,2
%N A022923 Number of integers m such that 7^n < 2^m < 7^(n+1).
%H A022923 Harvey P. Dale, <a href="/A022923/b022923.txt">Table of n, a(n) for n = 0..1000</a>
%F A022923 Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log_2(7) (A020860). - _Amiram Eldar_, Mar 01 2024
%e A022923 From _Amiram Eldar_, Mar 01 2024: (Start)
%e A022923 a(0) = 2 because 7^0 = 1 < 2^1 = 2 < 2^2 = 4 < 7^1 = 7.
%e A022923 a(1) = 3 because 7^1 = 7 < 2^3 = 8 < 2^4 = 16 < 2^3 = 32 < 7^2 = 49.
%e A022923 a(2) = 3 because 7^2 = 49 < 2^6 = 64 < 2^7 = 128 < 2^8 = 256 < 7^3 = 343. (End)
%t A022923 Differences[Floor[Log2[7^Range[0,100]]]] (* _Harvey P. Dale_, Jun 23 2019 *)
%Y A022923 Cf. A020860, A022921, A022922.
%K A022923 nonn,easy
%O A022923 0,1
%A A022923 _Clark Kimberling_