This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022931 #21 Dec 21 2018 16:03:34 %S A022931 1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1, %T A022931 2,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1, %U A022931 1,2,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1 %N A022931 Number of e^m between Pi^n and Pi^(n+1). %F A022931 a(n) = floor((n + 1) log Pi) - floor(n log Pi). - _Alonso del Arte_, Dec 20 2018 %e A022931 Pi^5 = 306.01968478528145326274131... and Pi^6 = 961.389193575304437...; in between them we find e^6 = 403.4287934927351226... and no other powers of e with integer exponents. Hence a(5) = 1. %e A022931 Pi^6 = 961.389193575304437... and Pi^7 = 3020.2932277767920675142...; in between them we find e^7 = 1096.63315842845859926372... and e^8 = 2980.957987041728274743592... Hence a(6) = 2. %p A022931 Digits:= 30: %p A022931 log_Pi:= evalf(log(Pi)); %p A022931 a:= n-> floor((n+1)*log_Pi) -floor(n*log_Pi): %p A022931 seq(a(n), n=0..80); # _Alois P. Heinz_, Dec 21 2018 %t A022931 Table[Floor[(n + 1)Log[Pi]] - Floor[n Log[Pi]], {n, 0, 99}] (* _Alonso del Arte_, Dec 21 2018 *) %o A022931 (Scala) val logPi = Math.log(Math.PI); for (n <- 0 to 99) yield (Math.floor(logPi * (n + 1)) - Math.floor(logPi * n)).toInt // _Alonso del Arte_, Dec 21 2018 %Y A022931 Cf. A000796 (Pi), A001113 (e), A053510 (log(Pi)), A059561 (floor(n*log(Pi))). %K A022931 nonn,easy %O A022931 0,7 %A A022931 _Clark Kimberling_