This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A022932 #16 Sep 23 2017 19:11:05 %S A022932 0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1, %T A022932 1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1, %U A022932 1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1 %N A022932 a(n) is the number of powers Pi^m between e^n and e^(n+1). %C A022932 Characteristic function of A059561. - _Antti Karttunen_, Sep 22 2017 %H A022932 Hans Havermann & Antti Karttunen, <a href="/A022932/b022932.txt">Table of n, a(n) for n = 0..10000</a> %H A022932 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a> %t A022932 t = Table[IntegerPart[i/Log[Pi]] - IntegerPart[(i - 1)/Log[Pi]], {i, 1000000}]; (* _Hans Havermann_, Sep 22 2017 *) %o A022932 (PARI) a(n)=(n+1)\log(Pi) - n\log(Pi) \\ _Charles R Greathouse IV_, Jan 16 2017 %Y A022932 Cf. A059562 (positions of zeros after the initial a(0)=0), A059561 (of ones). %K A022932 nonn %O A022932 0,1 %A A022932 _Clark Kimberling_ %E A022932 More terms from _Antti Karttunen_, Sep 22 2017