cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023012 Number of partitions of n into parts of 14 kinds.

This page as a plain text file.
%I A023012 #26 Jun 28 2025 08:43:14
%S A023012 1,14,119,770,4165,19754,84602,333608,1228080,4263770,14071827,
%T A023012 44420796,134793918,394805110,1119974875,3086034350,8280022023,
%U A023012 21678277754,55486209625,139065013640,341779759755,824753397814,1956347387428
%N A023012 Number of partitions of n into parts of 14 kinds.
%C A023012 a(n) is Euler transform of A010853. - _Alois P. Heinz_, Oct 17 2008
%H A023012 Seiichi Manyama, <a href="/A023012/b023012.txt">Table of n, a(n) for n = 0..1000</a>
%H A023012 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A023012 <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>
%F A023012 a(0) = 1, a(n) = (14/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017
%F A023012 a(n) ~ m^((m+1)/4) * exp(Pi*sqrt(2*m*n/3)) / (2^((3*m+5)/4) * 3^((m+1)/4) * n^((m+3)/4)) * (1 - ((9+Pi^2)*m^2+36*m+27) / (24*Pi*sqrt(6*m*n))), set m = 14. - _Vaclav Kotesovec_, Jun 28 2025
%p A023012 with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*14, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # _Alois P. Heinz_, Oct 17 2008
%t A023012 CoefficientList[Series[1/QPochhammer[x]^14, {x, 0, 30}], x] (* _Indranil Ghosh_, Mar 27 2017 *)
%o A023012 (PARI) Vec(1/eta(x)^14 + O(x^30)) \\ _Indranil Ghosh_, Mar 27 2017
%Y A023012 14th column of A144064. - _Alois P. Heinz_, Oct 17 2008
%K A023012 nonn
%O A023012 0,2
%A A023012 _David W. Wilson_