This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A023013 #27 Jun 28 2025 08:43:45 %S A023013 1,15,135,920,5220,25893,115700,475065,1817910,6551390,22414314, %T A023013 73265580,229972855,696109950,2039031360,5796944357,16036186005, %U A023013 43259046975,114012183695,294067720380,743368453326,1844121021245,4494803760045 %N A023013 Number of partitions of n into parts of 15 kinds. %C A023013 a(n) is Euler transform of A010854. - _Alois P. Heinz_, Oct 17 2008 %H A023013 Seiichi Manyama, <a href="/A023013/b023013.txt">Table of n, a(n) for n = 0..1000</a> %H A023013 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A023013 <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a> %F A023013 a(0) = 1, a(n) = (15/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017 %F A023013 a(n) ~ m^((m+1)/4) * exp(Pi*sqrt(2*m*n/3)) / (2^((3*m+5)/4) * 3^((m+1)/4) * n^((m+3)/4)) * (1 - ((9+Pi^2)*m^2+36*m+27) / (24*Pi*sqrt(6*m*n))), set m = 15. - _Vaclav Kotesovec_, Jun 28 2025 %p A023013 with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*15, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # _Alois P. Heinz_, Oct 17 2008 %t A023013 CoefficientList[Series[1/QPochhammer[x]^15, {x, 0, 30}], x] (* _Indranil Ghosh_, Mar 27 2017 *) %o A023013 (PARI) Vec(1/eta(x)^15 + O(x^30)) \\ _Indranil Ghosh_, Mar 27 2017 %Y A023013 15th column of A144064. - _Alois P. Heinz_, Oct 17 2008 %K A023013 nonn %O A023013 0,2 %A A023013 _David W. Wilson_