cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023014 Number of partitions of n into parts of 16 kinds.

This page as a plain text file.
%I A023014 #23 Jun 28 2025 08:44:11
%S A023014 1,16,152,1088,6460,33440,155584,663936,2636326,9845040,34861152,
%T A023014 117809728,381946360,1193074144,3603543040,10556065152,30068145905,
%U A023014 83466484112,226236086512,599785472000,1557643542308,3967888347232,9926348625408,24413219138816
%N A023014 Number of partitions of n into parts of 16 kinds.
%C A023014 a(n) is Euler transform of A010855. - _Alois P. Heinz_, Oct 17 2008
%H A023014 Alois P. Heinz, <a href="/A023014/b023014.txt">Table of n, a(n) for n = 0..1000</a>
%H A023014 <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>
%H A023014 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A023014 G.f.: Product_{m>=1} 1/(1-x^m)^16.
%F A023014 a(0) = 1, a(n) = (16/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017
%F A023014 a(n) ~ m^((m+1)/4) * exp(Pi*sqrt(2*m*n/3)) / (2^((3*m+5)/4) * 3^((m+1)/4) * n^((m+3)/4)) * (1 - ((9+Pi^2)*m^2+36*m+27) / (24*Pi*sqrt(6*m*n))), set m = 16. - _Vaclav Kotesovec_, Jun 28 2025
%p A023014 with (numtheory): a:= proc(n) option remember; `if`(n=0, 1, add (add (d*16, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq (a(n), n=0..40); # _Alois P. Heinz_, Oct 17 2008
%t A023014 CoefficientList[Series[1/QPochhammer[x]^16, {x, 0, 30}], x] (* _Indranil Ghosh_, Mar 27 2017 *)
%o A023014 (PARI) Vec(1/eta(x)^16 + O(x^30)) \\ _Indranil Ghosh_, Mar 27 2017
%Y A023014 Cf. 16th column of A144064. - _Alois P. Heinz_, Oct 17 2008
%K A023014 nonn
%O A023014 0,2
%A A023014 _David W. Wilson_