This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A023015 #25 Jun 28 2025 08:44:34 %S A023015 1,17,170,1275,7905,42619,206091,912475,3753600,14503040,53073898, %T A023015 185172670,619237835,1993524975,6200890505,18693654410,54763023032, %U A023015 156250892610,435071511875,1184288668525,3156320339542,8247548150893,21155326555195,53326448236250 %N A023015 Number of partitions of n into parts of 17 kinds. %C A023015 a(n) is Euler transform of A010856. - _Alois P. Heinz_, Oct 17 2008 %H A023015 Alois P. Heinz, <a href="/A023015/b023015.txt">Table of n, a(n) for n = 0..1000</a> %H A023015 <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a> %H A023015 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A023015 a(0) = 1, a(n) = (17/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017 %F A023015 a(n) ~ m^((m+1)/4) * exp(Pi*sqrt(2*m*n/3)) / (2^((3*m+5)/4) * 3^((m+1)/4) * n^((m+3)/4)) * (1 - ((9+Pi^2)*m^2+36*m+27) / (24*Pi*sqrt(6*m*n))), set m = 17. - _Vaclav Kotesovec_, Jun 28 2025 %p A023015 with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*17, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # _Alois P. Heinz_, Oct 17 2008 %t A023015 CoefficientList[Series[1/QPochhammer[x]^17, {x, 0, 30}], x] (* _Indranil Ghosh_, Mar 27 2017 *) %o A023015 (PARI) Vec(1/eta(x)^17 + O(x^30)) \\ _Indranil Ghosh_, Mar 27 2017 %Y A023015 Cf. 17th column of A144064. - _Alois P. Heinz_, Oct 17 2008 %K A023015 nonn %O A023015 0,2 %A A023015 _David W. Wilson_