cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023042 Numbers whose cube is the sum of three distinct nonnegative cubes.

This page as a plain text file.
%I A023042 #84 May 10 2025 11:28:20
%S A023042 6,9,12,18,19,20,24,25,27,28,29,30,36,38,40,41,42,44,45,46,48,50,53,
%T A023042 54,56,57,58,60,63,66,67,69,70,71,72,75,76,78,80,81,82,84,85,87,88,89,
%U A023042 90,92,93,95,96,97,99,100,102,103,105,106,108,110,111,112,113
%N A023042 Numbers whose cube is the sum of three distinct nonnegative cubes.
%C A023042 Numbers w such that w^3 = x^3+y^3+z^3, x>y>z>=0, is soluble.
%C A023042 A226903(n) + 1 is an infinite subsequence parametrized by Shiraishi in 1826. - _Jonathan Sondow_, Jun 22 2013
%C A023042 Because of Fermat's Last Theorem, sequence lists numbers w such that w^3 = x^3+y^3+z^3, x>y>z>0, is soluble. In other words, z cannot be 0 because x and y are positive integers by definition of this sequence. - _Altug Alkan_, May 08 2016
%C A023042 This sequence is the same as numbers w such that w^3 = x^3+y^3+z^3, x>=y>=z>0, is soluble as Legendre showed that a^3+b^3=2*c^3 only has the trivial solutions a = b or a = -b (see Dickson's History of the Theory of Numbers, vol. II, p. 573). - _Chai Wah Wu_, May 13 2017
%D A023042 Ya. I. Perelman, Algebra can be fun, pp. 142-143.
%H A023042 Nathaniel Johnston and Chai Wah Wu, <a href="/A023042/b023042.txt">Table of n, a(n) for n = 1..10000</a> (1..1500 from Nathaniel Johnston)
%H A023042 A. Russell and C. E. Gwyther, <a href="http://www.jstor.org/stable/3605742">The Partition of Cubes</a>, The Mathematical Gazette, 21 (1937), pp. 33-35.
%H A023042 <a href="/index/Di#Diophantine">Index to sequences related to Diophantine equations</a> (3,1,3)
%e A023042 20 belongs to the sequence as 20^3 = 7^3 + 14^3 + 17^3.
%p A023042 for w from 1 to 113 do for z from 0 to w-1 do bk:=0: for y from z+1 to w-1 do for x from y+((w+z) mod 2) to w-1 by 2 do if(x^3+y^3+z^3=w^3)then printf("%d, ",w); bk:=1: break: fi: od: if(bk=1)then break: fi: od: if(bk=1)then break: fi: od: od: # _Nathaniel Johnston_, Jun 22 2013
%t A023042 Select[Range[200], n |-> Length[PowersRepresentations[n^3, 3, 3]] > 1] (* _Paul C Abbott_, May 07 2025 *)
%o A023042 (PARI) has(n)=my(L=sqrtnint(n-1,3)+1, U=sqrtnint(4*n,3)); fordiv(n,m, if(L<=m && m<=U, my(ell=(m^2-n/m)/3); if(denominator(ell)==1 && issquare(m^2-4*ell), return(1)))); 0
%o A023042 list(lim)=my(v=List(),a3,t); lim\=1; for(a=2,sqrtint(lim\3), a3=a^3; for(b=if(a3>lim, sqrtnint(a3-lim-1,3)+1,1), a-1, t=a3-b^3; if(has(t), listput(v,a)))); Set(v) \\ _Charles R Greathouse IV_, Jan 25 2018
%Y A023042 Cf. A001235, A003072, A114923, A225908, A226903.
%K A023042 nonn
%O A023042 1,1
%A A023042 _N. J. A. Sloane_